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For years, astrophysicists, plasma fusion, and fluid physicists have puzzled over Rayleigh-Taylor turbulent
mixing layers. In particular, strong discrepancies in the growth rates have been observed between experiments
and numerical simulations. Although two phenomenological mechanisms �mode-coupling and mode-
competition� have brought some insight on these differences, convincing theoretical arguments are missing to
explain the observed values. In this paper, we provide an analytical expression of the growth rate compatible
with both mechanisms and is valid for a self-similar, low Atwood Rayleigh-Taylor turbulent mixing subjected
to a constant or time-varying acceleration. The key step in this work is the presentation of foliated averages and
foliated turbulent spectra highlighted in our three-dimensional numerical simulations. We show that the exact
value of the Rayleigh-Taylor growth rate not only depends upon the acceleration history but is also bound to
the power-law exponent of the foliated spectra at large scales.
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I. INTRODUCTION

If allowed to evolve long enough, the Reynolds number of
a Rayleigh-Taylor �RT� flow �1,2� increases and the mixing
eventually becomes fully turbulent �3,4�. Then, at late time,
the width of the mixing layer grows according to

L�t� = �pAg�t�t2, �1�

when the gravitational field history �5� is of the form g�t�
� tp. The Atwood number A quantifies the density contrast of
the initially pure fluids and is tied to the acceleration in any
buoyant flow. From a purely theoretical point of view, the RT
growth rate coefficient �p should be universal if the late
stage of the evolution of the mixing zone is self-similar and
should only depend upon the exponent p of the gravitational
field history. However, even today, the value of “alpha” ���,
which is the name given by the “alpha-group collaboration”
�3� to �p /2 when p=0 �constant acceleration�, is still a sub-
ject of controversy.

For years, the discrepancy between its value inferred from
numerical simulations �3,4,6,7� �initialized with small wave-
lengths�, scattered around 0.05, and its experimental values
�8–11�, twice as large, has thrown doubt on its universality.
Not long ago, the heuristic mode-competition mechanism
�12,13� put an end to this paradox: adding a small amount of
modes of large wavelength to the perturbation of the initial
interface helps increase the value of � and reconciles nu-
merical simulations with laboratory experiments. But, it is
also instrumental in demonstrating that the initial conditions
in any laboratory experiments do feature these modes of
large wavelength triggered by external causes like vibrations
and residual motions. Flows of interest �geophysics, atmo-
spheric, and astrophysics �14,15��, to a large extent, are not
confined to a laboratory. Orders of magnitude may separate
the length scales of the interface perturbation with the geo-
metric size of the flow. This is why, the mode-coupling
mechanism, initiated with small wavelength modes, is

thought to be realized in astrophysical mixing �4� and other
natural flows.

Here, in order to find the theoretical value of the growth
rate ��p�, we have adopted a point of view which has been
used in the study of homogeneous turbulence �HT� for al-
most half a century but never investigated in RT turbulent
mixing. The “large-scale structure of homogeneous turbu-
lence” �16,17� has been studied to understand the conjec-
tured persistence of big eddies and the decay rate of various
physical quantities in turbulent flows. At large scales, the
turbulent kinetic energy density spectrum behaves as E�k�
�ks where the value of s depends on the initialization of
freely decaying HT in a way which is still unclear �18–22�.
Bulk quantities of such flows, like turbulent kinetic energy,
vary as power laws at late time and their exponents appear
solely related to the value of s �23�. That underlines the fact
that large-scale spectra have a strong influence on the behav-
ior of the overall flow. The theoretical study of freely decay-
ing HT is made difficult by the fact that large scales are
driven by non linear effect �triadic interaction�. In contrast,
the RT turbulence, although anisotropic, displays a signifi-
cant difference with freely decaying HT. When plunged in a
gravitational field, density fluctuations produce motion
through buoyancy. This production mechanism affects all
scales �24�, even the largest, and produces turbulent kinetic
energy at all times. It may not be the dominant effect in the
inertial range, as argued in �25,26�, but it overcomes non
linear transfer mechanism at large scales making the theoret-
ical study of RT turbulence much easier.

Here, we demonstrate that it is possible to display an ex-
act formula for �p which depends upon p, the exponent of
the acceleration history, and s, the power-law exponent at
large scales of foliated spectra that rise up naturally, along
with foliated average, from the theoretical developments
hereafter. This foliation procedure is presented in turbulent
mixing theory because, among other interesting features, it
allows to cancel out the formal effect of pressure in the equa-
tions, while keeping its physical effect on the whole mixing
zone, making theoretical calculations amenable.*Corresponding author; olivier.poujade@cea.fr
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II. TRANSVERSE AVERAGE

A RT mixing occurs whenever two fluids of different den-
sity, initially separated by a sharp interface, are subjected to
a gravitational field directed from the heavier �density �h� to
the lighter �density �l� and when the initial interface is
slightly distorted by a perturbation whose spectrum contains
modes with sufficiently large wavelengths to overcome vis-
cous effects at the onset. Such a flow, with two incompress-
ible fluids in the low Atwood limit A= ��h−�l� / ��h+�l��1
�Boussinesq approximation�, is governed �27� by a concen-
tration Eq. �2�, the Navier-Stokes equation supplemented
with a buoyant source term �3�, and the incompressibility
constraint �4�

�tc + �u��c = ��c , �2�

�tu + �u��u = − �P + 2Agc + ��u , �3�

� · u = 0, �4�

where c�x , t� is the mass fraction of the heavy fluid �c=0 in
pure light fluid and c=1 in pure heavy fluid�, u�x , t� the
velocity field, and p�x , t� the pressure field. The molecular
diffusivity � and the kinematic viscosity of the mixture � are
both assumed to be constant. The gravitational acceleration
vector g�t� points down and its intensity may be time depen-
dent as outlined earlier. In our simulations �described in the
Sec. VII�, the flow fills a rectangular box of size H�H
�2H �see Fig. 1 for more details�.

The calculation starts by averaging Eqs. �2�–�4�. The
transverse spatial average of a physical quantity q at height z
is defined according to

q̄�z,t� =
1

H2�
H2

dxdyq�x,y,z,t� , �5�

along with its fluctuating part q��x ,y ,z , t�=q�x ,y ,z , t�
− q̄�z , t�. Velocity, concentration, and pressure fields can be
decomposed into mean and fluctuating parts: u=u+u�, c
= c̄+c�, and p= p̄+ p�. The velocity along the z axis will be
called uz and v will denote the transverse component in the
xy plane so that u= �v ,uz�. The divergence Eq. �4� and the
fact that vertical velocity cancels at the top and bottom walls
yield uz�z , t�=0. Similarly, in a transverse plane at height z,
there is an equal probability of finding vi and −vi �right/left

symmetry in the experimental setup�; thus, vi=0, vi�c�=0,

and vi�uz�=0 at all times �27� �i=x ,y�. The behavior of the
fluctuating flow will be studied at large scales �low k� and at
high Reynolds number. Viscous and diffusive terms �in factor
of � and �� can then be discarded because in the spectral
domain, they contribute a factor �k2 and �k2. These terms
become important only after a time t�1 / ��k2�. That happens
after a time H2 /�, or H2 /�, for viscous, or diffusive, terms at
large-scale k�1 /H. This is well above �H / �Ag� �the time
required by the RT mixing zone to grow and to fill the do-
main of width H� since H is well above ����2 /Ag�1/3 ��
being the mesh size as in �3��. Therefore, the resulting set of
equations governing the evolution of the fluctuating flow at
large scales reads

�tc� + uz��zc̄ + �i�vi�c�� + �z�uz�c�� = �zuz�c�, �6�

�tuz� + � j�v j�uz�� + �z�uz�uz�� − �z�uz�uz�� = − �zp� − 2Agc�,

�7�

�tvi� + � j�v j�vi�� + �z�uz�vi�� − � j�v j�vi�� = − �ip�, �8�

where Einstein summation convention is used on the re-
peated indices i and j� �x ,y	.

III. FOLIATED AVERAGE

The last equations can be Fourier transformed for the pur-
pose of showing that the growth rate of a RT mixing zone
depends upon the structure of turbulence at large scales.
Since the physical domain is assumed to be periodic along x
and y �see Fig. 1�, one defines a Fourier transform operator
acting on these two directions only �transverse directions�. It
turns a generic quantity f�r ,z , t�, where r= �x ,y� is the trans-

verse position, into f̃�k ,z , t�, where k= �kx ,ky� is the trans-
verse wave vector. Equations �6�–�8� become

FIG. 1. �Color online� Image of a turbulent Rayleigh-Taylor
mixing zone for a constant acceleration �p=0� when L�t�=H from
our numerical simulations. The axes are defined in such a way that
the mixing zone grows along z and is spatially periodic along x and
y. The initial interface between pure light fluid and pure heavy fluid
is located at z=0. Thus, along the z axis at time t, the flow goes
from a turbulent mixing of two fluids when 
z
	L�t� /2 to an inter-
mittent border at 
z
�L�t� /2 and finally to a laminar pure fluid
�light or heavy depending upon the direction� when 
z

L�t� /2.
The vertical velocity uz� of the flow is plotted in false color on the
vertical sections. It puts to the fore large structures going up �light
gray/red� and down �dark/blue�, made up of mixed fluids. The 3D
bubblelike shapes on top �at z�H /2� correspond to isosurfaces of
uz� at 80% of its maximum positive value.
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�tc�˜ = − uz�
˜�zc̄ − �z�uz�

˜ � c�˜� − ıkjv j�
˜ � c�˜, �9�

�tuz�
˜ = − �z�uz�

˜ � uz�
˜� − �zp�˜ − 2Agc�˜ − ıkjv j�

˜ � uz�
˜, �10�

�tvi�
˜ = − �z�uz�

˜ � vi�
˜� − ıkip�˜ − ıkjv j�

˜ � vi�
˜, �11�

where � is the usual folded product. In order to simplify Eqs.
�9�–�11�, one can eliminate the effect of �z, and with it, the
effect of pressure and non locality, by integrating these equa-
tions along the anisotropic direction z. Therefore, these argu-
ments suggest introducing the foliated spatial average which,
for a physical quantity q, is defined according to

�q�x,y,t� =
1

H
� q�x,y,z,t�dz . �12�

It amounts to chopping the domain �foliation� in elementary
slices, transverse to the anisotropic direction, and to squeez-
ing them by adding them up, resulting in an effective two-
dimensional �2D� flow �see Fig. 2�. Both in the concentration

Eq. �9� and in the equation of motion �10�, ��z�uz�
˜�q�˜�=0

�where q�=c� or uz�� because at top and bottom walls uz�
˜=0.

The average of the pressure gradient is ��zp�˜=0 because
pressure fluctuations decrease outside the mixing zone. It has
to be assumed that the top and bottom walls are far enough

so that limz→�� p�˜�z ,k , t�=0. Consequently, the boundaries
do not affect the flow within the mixing zone if L�t��2H
�which can be relaxed to L�t��H in simulations�. This is
why, the resulting concentration equation and equation of
motion after foliated average are

�t�c�˜ = − �uz�
˜�zc̄ − ıkj�v j�

˜ � c�˜ , �13�

�t�uz�
˜ = − 2Ag�c�˜ − ıkj�v j�

˜ � uz�
˜ . �14�

In Eq. �13�, the term �uz�
˜�zc̄ can be simplified because, at

small Atwood number, the profile of c̄�z , t� deviates only
from a straight line �constant slope� at the edges of the mix-
ing zone. This approximation is corroborated experimentally
�10,11� and numerically, in our simulations �A=0.1�, to
within statistical fluctuations due, at a given height z, to the
finite number N�t��H2 /��t�2 of eddies in the transverse
plane of area H2 �the integral length scale ��t�, i.e., the di-
ameter of a typical eddy, varies like L�t�� tp+2 in the self-
similar regime and these statistical fluctuations become neg-
ligible in the limit H→+� since their rms amplitude is on
the order 1 /�N�t����t� /H�. In this limit, the derivative �zc̄
is uniform and equal to 1 /L�t� within the mixing zone to a
good approximation. Thus, the theoretical development sug-
gests defining L such that �zc̄=1 /L�t� which can be brought
close to another definition of the width at low Atwood num-
ber �see the end of Sec. VII�. Therefore, and this is the only
approximation made in this development, it is possible to
write

�uz�
˜�zc̄ � �uz�

˜�zc̄ = �uz�
˜/L�t� . �15�

The contribution of the edges is negligible in the foliated
average because it represents a small portion of the integra-
tion domain. As a consequence, �i� at large scale
�k�2 /��t��, �ii� at low Atwood �iii� at high Reynolds num-
ber, and �iv� in the limit H→+� �i.e., L�t��H�, the evolu-
tion of foliated second moments can be derived. From Eqs.
�13� and �14�, straightforward algebraic manipulations pro-
vide

�t��c�˜�c�˜�� = −
2 Re��uz�

˜�c�˜��
L�t�

− kj� j
c, �16�

�t��uz�
˜�uz�

˜�� = − 4Ag Re��uz�
˜�c�˜�� − kj� j

z, �17�

�t�Re��uz�
˜�c�˜��� = − 2Ag�c�˜�c�˜� −

�uz�
˜�uz�

˜�

L�t�
− kj� j

cz,

�18�

where � j
c=2 Re�ı�v j�

˜�c�˜�c�˜��, � j
z=2 Re�ı�v j�

˜�uz�
˜�uz�

˜��, and

� j
cz=Re�ı�v j�

˜�uz�
˜�c�˜��+Im�ı�v j�

˜�c�˜�uz�
˜�� cancelled out

when ensemble averaged.

IV. ENSEMBLE AVERAGED FOLIATED SPECTRA

Let us note q̂ the ensemble average of a generic quantity
q. Different realizations of the RT flow have the same initial
spectrum of interface perturbations but the initial phases of
the modes are different and are generated at random. As a
result, if one realization is initialized with a set of random
phases, called ��k , t=0�, and produces � j�k , t�, then the par-
ticular realization initialized with phases ��k , t=0�+ will
produce −� j�k , t� with the exact same probability. When

FIG. 2. �Color online� Image of the foliated concentration and of
the foliated vertical velocity. The top slice displays �c��x ,y� in
false color at the instant when L�t�=H for p=0. The bottom slice
displays −�uz��x ,y� �the minus sign is introduced so that colors
match between top and bottom�. On the color chart, the value 1
corresponds to the normalized maximum. The striking similarity in
location and shape of large scales on both planes �peculiar to foli-
ated average� reveals that heavy mixed fluid tends to concentrate
where the flow goes down �dark/blue� and light mixed fluid where
the flow goes up �light gray/red�.
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averaged, these two contributions cancel out and therefore
the ensemble average over all possible realizations—or
equivalently, over all possible initializations—translates into

� j
ĉ�k , t�=0, � j

ẑ�k , t�=0, and � j
cẑ�k , t�=0.

It suggests defining the ensemble averaged foliated spec-
tra for kinetic energy, concentration and production, respec-
tively, as

Ez�k,t� =
k

2
� d��uz�

˜�uz�
�̃̂ , �19�

Ec�k,t� = k� d��c�˜�c��̃̂ , �20�

Ecz�k,t� = − k� d� Re��uz�
˜�c��̃̂� , �21�

where the integration over the solid angle d� is to be under-
stood as the integration over all directions of k �in the trans-
verse plane�. The �s in Eqs. �16�–�18� disappear when en-
semble averaged and the ensemble averaged foliated spectra,
referred to as foliated spectra for short, are coupled to each
other at large scales according to

Ėc = 2
Ecz

L�t�
, �22�

Ėz = 2AgEcz, �23�

Ėcz = 2AgEc + 2
Ez

L�t�
. �24�

It should be stressed that this closed set of equations does not
hold if foliated average operators are removed or even re-
placed by transverse average because of the non local effect
of pressure. Since these equations are linear, autonomous in
k, and do not display derivatives with respect to k, it comes
as a byproduct prediction of the theory that, with the afore-
mentioned definitions, all three foliated spectra must have
the same power-law exponent at large scales: ks. The expo-
nent s is independent of time to comply with self-similarity.
This common value is a special feature of the foliated spectra
�see Fig. 3�. Foliated spectra have deliberately been desig-
nated by script E in order to stress the difference with trans-
verse spectra classically defined by

Ez�k,z,t� =
k

2
� d�uz�

˜uz�
˜�, �25�

Ec�k,z,t� = k� d�c�˜c�˜�, �26�

Ecz�k,z,t� = − k� d� Re�uz�
˜c�˜�� . �27�

Both types of spectrum were compared to show that this
common exponent is specific to the foliated spectra whereas

transverse spectra �concentration and velocity for instance�
have different power-law exponents �7� at large scales. This
can be understood when realizing that a transverse spectrum
is calculated using Fourier modes on a slice at a height z in
the middle of the mixing zone. A foliated spectrum, on the
other hand, uses the sum along z of all these modes. The
resulting spectrum is radically different and benefits from
interferences between modes at different heights.

(b)

(a)

FIG. 3. �Color online� Normalized foliated spectra versus trans-
verse spectra. The left figure represents the ratio of velocity and
concentration spectra, Ez�k� / �Ec�k�g�t�L�t�� in solid lines and
Ez�k� / �Ec�k�g�t�L�t�� in dashed lines. The right figure represents the
ratio of production and concentration spectra,
Ecz�k� / �Ec�k��g�t�L�t�� in solid lines and Ecz�k� / �Ec�k��g�t�L�t�� in
dashed lines. Displayed results come from the simulation at con-
stant acceleration p=0. The colors correspond to different times in
the evolution of the mixing zone: t1 �dark/blue�, 	t2 �medium gray/
red�, and 	t3 �light gray/green� defined by L�t1�=0.5H, L�t2�
=0.75H, and L�t3�=H. In the whole domain of wave numbers, ra-
tios of foliated spectra are distinctively smoother than transverse
spectra. In the domain where n	6 �large scales�, the ratio of foli-
ated spectra is constant and does not vary with time whereas, in the
same domain, the ratio of transverse spectra can vary up to one
decade.
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V. GROWTH RATE FORMULA

For self-similarity to hold, the late time behavior of the
foliated spectra must be

Ez�k,t� = Ez
0kstez, �28�

Ec�k,t� = Ec
0kstec, �29�

Ecz�k,t� = Ecz
0 kstecz, �30�

at low k where Ec
0, Ez

0, and Ecz
0 are constants independent from

k and t. In addition, the exponent of k in each of this aver-
aged spectrum �s� and the time exponents �ec ,ez ,ecz� must be
constant in time. When replacing these expressions with
Ag�t�=Agptp and L�t�=�pAgptp+2 in Eqs. �22�–�24� one
gets the following relations:

ez = ec + 2�p + 1� , �31�

ecz = ec + �p + 1� , �32�

Ez
0 = ��p�Agp�2ec/ez�Ec

0, �33�

Ecz
0 = ��pAgpec/2�Ec

0, �34�

�p =
8

ezec
, �35�

which come straight from Eqs. �2�–�4� within the approxima-
tion made in Eq. �15�. Using Eqs. �28� and Eqs. �31�–�35�, a
nontrivial exact result can be deduced:
Ecz

2 �k , t� / �2Ez�k , t�Ec�k , t��=1 valid at large scale �see Fig. 4�.

A fundamental feature of concentration is that its fluctua-
tion variance, c�c� tends to a constant in the self-similar re-
gime because concentration is a physical quantity bounded
between 0 and 1. It cannot go to zero for that would mean
the mixing tends to be heterogeneous in the middle of the
mixing zone, thereby going against the fact that at all times
any side of the mixing zone must be supplied with pure fluid
from the other side. The mixed-fluid supplying channels
have been highlighted in Figs. 1 and 2. This is exemplified
by numerical simulations and experiments reporting molecu-
lar mixing rates ranging from 0.7 to 0.8 �3,4,10,27�.

The question now is: how about �c��c�? A very simple
argument can be given: the discretized foliated average,

�c� = dz/H �
i=−H/dz

H/dz

ci�, �36�

can be approximated by

�c� = dz/H �
i=−L�t�/dz

L�t�/dz

ci�, �37�

since c� is only nonzero within the mixing zone. That is why,

�c��c� � dz2/H2 �
i=−L�t�/dz

L�t�/dz

�
j=−L�t�/dz

L�t�/dz

ci�cj�, �38�

�c��c� � dz2/H2 �
i=−L�t�/dz

L�t�/dz

�
j=−L�t�/dz

L�t�/dz

c0
2�ij , �39�

if we say c�c�=c0
2 in the self-similar regime as described in

the previous paragraph. Therefore,

�c��c� � dz2/H2 �
i=−L�t�/dz

L�t�/dz

c0
2 = dz/H2L�t�c0

2. �40�

As a result �c��c� must grow like L�t� �corroborated by our
numerical simulations�.

Therefore, since �c��c�=�0
+�dkEc�k , t� varies as

�0
2/��t��t−p−2

dkEc�k , t�� tec−�p+2��s+1� and must evolve as L�t�
� tp+2, the value of ec is bound to be �p+2��s+2� and, by
inference, the time exponents ez= �p+2��s+2�+2�p+1� and
ecz= �p+2��s+2�+ �p+1�. Therefore, the value of the
Rayleigh-Taylor growth rate for the turbulent mixing zone
width, �p, is shown to depend upon p, which is the accelera-
tion exponent, and s, the foliated spectrum power-law expo-
nent at large scales, according to

�p�s� =
8

�p + 2��s + 2��p�s + 4� + 2�s + 3��
. �41�

This expression does not depend on gp as expected and con-
firmed in our simulations.

The demonstration leading to this formula did not provide
any arguments against the idea of an s varying with p. How-
ever, growth rates, at various values of p given by our simu-
lations in conjunction with those provided in �28�, were fitted
to the theoretical formula and a remarkable collapse of the
data was found for s=4.0�0.1 assuming s was independent
of p �see Fig. 5�. It is possible to check this result by using an

FIG. 4. �Color online� Normalized correlation spectra. The evo-
lution of R�k , t�=Ecz

2 �k , t� /2Ez�k , t�Ec�k , t� �solid lines� and of
R�k , t�=Ecz

2 �k , t� /2Ez�k , t�Ec�k , t� �dashed lines� at constant accel-
eration p=0 is compared at different times, t1 �dark/blue�, 	t2 �me-
dium gray/red�, and 	t3 �light gray/green�. The simulation, at p
=0 �but at p=1, 2 and 3 as well�, shows that when n�6, R=1 to
within 6% and with the same characteristic smoothness as already
depicted on Fig. 2 �vertical axis is linear�. On the contrary, R varies
significantly as time goes by on the same range of wave numbers.
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other obvious method: direct inspection of the foliated spec-
tra. The power law at large scales of foliated spectra was
checked on every simulation �p=0, 1, 2, and 3� and was
found to be compatible with s=4. The formula �41� is there-
fore a predictive formula: it gives the value of �p knowing p
�a controlled parameter� and s or, the other way around, it
gives s knowing p and �p. Our theory did not provide a value
for s for it certainly depends upon the way the mixing flow
reaches the self-similar regime. Moreover, RT turbulence in
2D is totally different from RT in three-dimensional �3D�
�25,29�. This dependence of �p upon spatial dimension is
hidden in the value of s. In order to find its value, the theory
would have to cope with the transition regime to make the
connection with the linear growth of the initial conditions
�s=4 seems to be compatible with annular spectrum initial
conditions in 3D�. It must be emphasized that the result �41�
is a proof that, in the self-similar regime, the growth of the
mixing zone only depends upon the structure of turbulence at
large scales �apart from p, it depends on s only�.

VI. IMPLICATIONS

Obviously, the formula for �p carries information on the
dynamics of the mixing zone width. Not so obvious is the
fact that it also provides information on the way this dy-
namic affects the mixing at large scale. If it is assumed that
the late time evolution of the mixing zone width does not
depend upon initial conditions—which may be true when the
characteristic length scale of the initial perturbations is much
smaller than that of the physical domain H—it is reasonable
to admit that it must depend on L�t� �and its derivatives� and
g�t� which are the only control parameters left in the prob-
lem. From this assumption, basis of the buoyancy-drag ap-
proach �8,30�, it is possible to build a simple evolution equa-
tion,

L̈�t� = CbAg�t�L�t� − CdL̇2�t�/L�t� , �42�

which depends on two adjustable constants. The constant Cb
quantifies buoyancy related to the mixing since CbA can be
seen as an effective Atwood number: the fluids are not pure,
with density �l and �h, in the mixing zone but they are partly
mixed with intermediate densities and the smaller Cb, the
smaller the effective Atwood number, the stronger the mix-
ing. The constant Cd quantifies drag, i.e., the exchange of
momentum between raising and falling mixed-fluids struc-
tures. This phenomenological approach does not by itself
provide any relation between these two adjustable constants.
However, replacing the self-similar values �1� of L and g in
Eq. �42� allows to recover the exact formula �41� if and only
if Cb=4 / �s+2� and Cd= �s+2� /2, which yields Cb=2 /Cd.
This correspondence between the simple model and the exact
result demonstrate the little importance of small scale as op-
posed to large scale in the bulk dynamics of the mixing.
Furthermore, it enables to understand the influence of s on
“intuitive” physical mechanisms like buoyancy, through the
effective Atwood number, and drag. Accordingly, the bigger
s, the stronger the drag, the smaller the effective Atwood
number and the better the mixing.

This is in agreement with numerical results �12,13� sug-
gesting that a smaller proportion of long wavelength in the
spectrum �bigger s: mode-coupling� decreases the growth
rate of the mixing zone width in opposition to a bigger pro-
portion of long wavelength �smaller s: mode-competition�.
Therefore, in the framework of foliated spectra where s is
defined, the two phenomenological mechanisms of mode-
coupling and mode-competition in Rayleigh-Taylor turbulent
mixing can be explained and brought together.

There is no reason in principle why techniques developed
in this work could not be applied to other mixing flows with
one anisotropic direction. For instance, in the case of
Richtmyer-Meshkov �RM� turbulence �30�, Ag=0 and the
mixing width L�t� varies like t� in Eqs. �22�–�24�. Persistence
of big eddies �16� is then an exact result for the foliated RM
flow since the right-hand side of Eq. �23� vanishes. The same
type of reasoning that led to Eq. �41� allows to find �
=2 / �s+4� �also an exact result when s is the power-law ex-
ponent of ensemble averaged foliated spectra at large scale�
which for 3�s�4 predicts a 1 /4=0.250���0.286=2 /7,
in agreement with experimental and numerical results.

VII. SIMULATIONS

A set of four simulations of Rayleigh-Taylor turbulent
mixing flows were carried out with the incompressible code
SURFER �31� for different acceleration histories g�t�� tp with
p=0, p=1, p=2, and p=3. For our purpose, gravity was
added to the original version.

An incompressible code is valuable to investigate flows
under variable acceleration because hydrostatic pressure bal-
ances instantaneously with the acceleration field. On the con-
trary, a compressible simulation would have to cope with the
creation of acoustic waves that would travel at the speed of
sound to balance pressure with time-varying acceleration.
These acoustic waves would bounce on the domain walls,

FIG. 5. �Color online� Observed to predicted ratio of growth rate
�p. Green squares correspond to results obtained with SURFER and
performed by the authors and red circles to results performed with
TURMOIL3D by D. Youngs and A. Llor. A least square best fit has
been applied on the numerical results using the formula �41� and it
was found, assuming s does not depend on p, that s=4.0�0.1.
Error bars correspond to the size of the biggest interval containing
all three different measures of �p: �1� �p=L�t� / �Ag�t�t2�, �2� �p

= L̇�t� / ��p+2�Ag�t�t�, and �3� the same method described in Ref.
�4�. Error bars were not provided in Ref. �28�.
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would go back and forth through the simulation domain and
would be detrimental to the simulations.

Each of those simulations was performed with the same
grid resolution: 128�128�256 �along x, y, and z, respec-
tively�. The large scale outcomes of a numerical simulation
of a Rayleigh-Taylor turbulent flow do not vary significantly,
for a given type of initial condition, by increasing the reso-
lution. This explains the choice of such a modest resolution
allowing to carry out more simulations.

SURFER is parallelized, 3D and evolves two immiscible
fluids separated by an interface. To reconstruct and advance
the fluid interfaces in time, SURFER uses an exactly volume
conserving variant of the Volume of Fluid algorithm with a
Piecewise Linear Interface Calculation method �VOF/PLIC�
�32�. The density of each fluid �h �for heavy� and �l �for light
fluid� are constant in time. The Navier-Stokes equation gov-
erning the evolution of the velocity field u is given by

�
du

dt
= − �p + � · ��S� + �r�Sn + �g , �43�

where � is the density, p is the pressure and g is the accel-
eration. The dynamic viscosity � equals �h=�h� or �l=�l�
�where � is a common kinematic viscosity� and S is the rate
of strain tensor defined by Sij =�iuj +� jui. The surface tension
� depends on the particular two fluids that will be heteroge-
neously mixed and the delta function, �S, is concentrated on
the surface of the interface, r is the mean curvature of this
surface and n is the unit normal on the surface. The discreti-
zation of Eq. �43� is performed on a marker-and-cell-type
staggered grid and the pressure is computed using an itera-
tive multigrid Poisson solver.

The simulations were carried out in nondimensional units.
Initially, two vertically stacked fluid layers of different den-
sity, such that A=0.1, have been considered �see Fig. 1�.
Periodic boundary conditions were prescribed on the four

vertical domain walls, whereas no flux and no slip conditions
were imposed on the two horizontal walls of the domain, at
the top and at the bottom. Initially, the velocity field
u�x ,y ,z , t=0� is perturbed around the interface using a sum
of random small amplitude modes which comply with the
incompressibility condition. The wave numbers selected
verify 15�n�17 �n�1� to get a late time self-similar evo-
lution of the flow �mode-coupling mechanism�. Kinematic
viscosity � and surface tension � in Eq. �43� were chosen in
such a way that they affect small scales only �large k
�2 /� where � is the mesh size�. This is why Ag /�
��2 /�4 and Ag /��� / ���3�. Therefore, ���Ag�3, as in
�3�, and ���Ag�4. It is important to stress that the interface
reconstruction mimics the effect of a small molecular diffu-
sion coefficient ���.

The value of �p is affected by how the width of the mix-
ing zone, L�t�, is measured or computed. Experimentally and
numerically, two methods are employed and they both use
c̄�z , t�. The threshold method prescribes Lth�t�= 
z99−z1

where c̄�z1 , t�=0.01 and c̄�z99, t�=0.99. This method is af-
fected by statistical fluctuations of c̄ producing noisy Lth�t�
and an even noisier derivative. The integral method pre-
scribes Lint�t�=6�dzc̄�z , t��1− c̄�z , t�� which provides an ex-
act value if the profile of c̄ is linear. Since c̄ is almost affine
everywhere in our simulation at low Atwood, the difference
between Lint�t� and 1 /�zc̄ is negligibly small. In a sense, the
reasoning that led to the growth rate formula dictated the
definition of L, by the integral method, which has been used
to calculate the value of �p in each of the four simulations.
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